CRi6/2010

161

I Articles

Jobhn P. Beardwood/ Michael Shour

Risk Management and Agile Software Development: Optimizing
Contractual Design

A recent report from Forester Research(Dr. Dobb’s
Global Developer Technographics Survey Q3 2009)
asked a cross-selection of 1298 IT professionals to iden-
tify which methodology most closely reflected the devel-
opment process that such professional was currently
using. At 35 %, the most popular response was Agile, in
comparison to a mere 13 % who responded that Water-
fall was their current methodology of choice. Put
another way, three times as many IT professionals used
Agile methodologies as did those who used Waterfall.

Over the last ten years, Agile software development
methodologies —those which take an iterative and incre-
mental approach, which aim to reduce unnecessary doc-
umentation and formality, and which seek to promote
teamwork and experimentation —have increasingly been
adopted by the software development community.
Agile’s advocates argue that by liberating programmers
from the shackles of traditional rigid, formalized devel-
opment methodologies, Agile has no equal for speed of
development, for efficiency, and for fostering creativity.
Agile’s critics counter that Agile is another name for
“cowboy coding”, or undisciplined “hacking”, which
produces less robust and buggier software. From a legal
perspective, however, the question is not whether Agile
is a superior development methodology. Rather, the
question is whether a contract for software development
using Agile needs to be differently structured, and
include different content, than where the development is
using Waterfall. This paper argues that the answer is an
emphatic yes.

The paper begins by examining the differences between,
and the advantages and disadvantages of each of, the
Waterfall and Agile development methodologies and
examines how Agile is not single, monolithic methodol-
0gy, and that it in fact suffers from some definitional
problems (e.g. when does Iterative programming transi-
tion into Agile?), by briefly reviewing some of the major
Agile methodologies (1.). The paper then summarizes the
developing consensus as to when Agile will, or will not,
be an appropriate methodology for a development pro-
ject (11.).

Having provided a briefing on Agile as a methodology,
the paper then highlights the risks of Agile, and potential
contractual strategies for responding to and mitigating
such risks (I11.).

P John P. Beardwood and Michael Shour are of the law firm Fasken Mar-
tineau DuMoulin LLP, Toronto. John is a partner, Co-Chair of the
firm’s National Technology and Intellectual Property Practice Group,
and Co-Chair of the Outsourcing Practice Group. Michael is an asso-
ciate in the Business Law Group. This is a general overview of the sub-
ject matter and should not be relied on as legal advice. For specific legal
advice on the topic and related matters, please contact the authors. Fur-
ther information about the authors at p. 192.

Exemplar fir John Beardwood

I. Understanding (FR)AGILE Software

1. Traditional Software Development

Agile is perhaps best understood by contrasting it to
Waterfall methods of development. The traditional
plan-driven software development model of the Water-
fall process was initially conceived to manage the devel-
opment of large software projects in the 1960s, such as
IBM’s System/360 operating system. Waterfall arranges
software development into a sequential series of com-
partmentalized phases, each with its own defined deli-
verables. A typical Waterfall process will be comprised
of the following phases: requirements analysis; project
planning and system design; coding; and integration and
testing.!

The Waterfall process is characterized by planning,
organization, and documentation. At the outset of a
Waterfall process, there will be a great deal of emphasis
on gathering and defining the business requirements —
that is, the “raw data” as to the what the customer
wants. Through formal meetings and analysis, a highly
detailed requirements document is developed. Once the
requirements are set out in the requirements document,
a system design document is developed, with a set of spe-
cifications®* — or design “roadmap” — as to how those
requirements will be achieved through software design.
From an operational point of view, the process of devel-
oping the specifications involves the customer, and thus
can itself assist in clarifying the requirements of the cus-
tomer. From a contractual point of view, however, if
there are ever disputes, or any ambiguity, as to what was
promised to the customer, this also can be clarified
through an examination of these documents.

Once the design specifications have been developed, the
project is divided into distinct modules with detailed
deliverables. Each module can be assigned to a different
programming team, with each team being responsible
for programming, testing, and debugging their respec-
tive module. Since the deliverables for each module are
clearly set out in the planning documents, the program-
mers need not be well-rounded, highly-skilled program-
mers, but merely need to be sufficiently skilled to under-
stand the requirements and carry out their respective
tasks. Test plans and reports are produced to ensure that
each module meets the specifications. If any changes are

1 Michael A. Cusumano and Stanley Smith, Beyond the Waterfall: Soft-
ware Development at Microsoft (Working Paper #3844-BPS-1995, MIT
Sloan School of Management and International Business Machines).
The Waterfall model was first described by Winston W. Royce, “Manag-
ing the Development of Large Software Systems,” Proceedings of IEEE,
August, 1970.

2 The terms are not always utilized so clearly, in that a requirements docu-
ment is sometimes called a “requirements specification” i.e. simply the
requirements written down on paper.

162 Beardwood/Shour

CRi6/2010

Risk Management and Agile Software Development: Optimizing Contractual Design

requested or required, a formalized and well-docu-
mented change management process is followed and
change management forms must be completed. After the
coding stage, the modules are assembled, tested, and
debugged, often with significant time spent rewriting
code to ensure the modules integrate properly.?

The planning and documentation associated with the
Waterfall process yields some obvious benefits:

> Limited, targeted customer involvement: The busi-
ness people who are consulted in developing the
specifications are required to invest time at the early
stages. Once the specifications have been developed,
however, their involvement is generally limited to the
final integration and testing phase, allowing them to
carry on with their primary business functions.

> Clear budgeting: Clear specifications and timelines
allow developers to make accurate bids for the work,
while allowing the procurer to effectively budget for
the project.

> Single development roadmap: For contracting pur-
poses, the detailed specifications lead to a require-
ments document that is useful from the perspective
of both the developer and the customer; once work
begins, large teams — even those spread out over dif-
ferent geographic locations — can follow the detailed
requirements and development milestones over lon-
ger time horizons.

> Divisible modules: Once the project is divided into
specific modules with clear deliverables, outsourcing
or subcontracting one section of the project becomes
possible.

> Benchmark for change management: If any changes
are requested or required, an examination of the
requirements and design documents allow the pro-
ject manager to quickly determine the impact of the
change on the timeline, cost, and operation of the
system. Such changes are well documented pursuant
to the change management process in the develop-
ment contract to ensure that there are no project-par-
alyzing disputes down the road.

On the other hand, the very structural elements (i.e.
planning, organization, and documentation) that pro-
duce the above benefits, are the same elements which can
disadvantage the Waterfall method:*

> Less flexible/responsive to change: While knowing
exactly what each stage of the project will produce at
the beginning of a development project has obvious
benefits, it is not always realistic to assume that the
customer will be able to clearly articulate its require-
ments at the outset. Often, the need for certain differ-
ent or additional deliverables only becomes apparent
once the development project is underway. The rigid
planning and detailed documentation of the Water-
fall method can become particularly burdensome
when developing software for a rapidly changing
market.

3 See generally, Dan Marks, “Development Methodologies Compares
Why different projects require different development methodologies”
N-Cycles Software Solutions, December, 2002 (online: www.ncycles.
com/e_whi_methodologies.htm).

4 David Parnas and Pail Clements, “A Rational Design Process: How and
Why to Fake it.” IEEE Trans. Software Eng., February 1986, pp. 251-
257.

Exemplar fir John Beardwood

> More isolated from collegial/customer feedback:
Segmenting the project into modules, to be com-
pleted by different teams, discourages cohesion and
creativity amongst the development team, reduces
valuable customer/user input, and often results in
design flaws not being discovered until well into the
testing phases. As a consequence, integration and
acceptance both carry a significant portion of the
operational and legal risk involved in a Waterfall
development project.

2. What is Agile Software?

Although the traditional Waterfall method has worked
well for many large projects, some argue that different
programming methods are suitable for different pro-
jects, and that not all projects fit well into the compart-
mentalized and formalized traditional Waterfall pro-
cess.’ While there are a number of software development
methodologies that are viewed as Agile, what those
methodologies have in common is that all generally seek
to move away from the traditional approach — where
there is a great deal of up-front planning, a master docu-
ment, and one or few iterations — towards an iterative
and incremental approach, with less documentation
and gormality, and more teamwork and experimenta-
tion.

In 2001, a group of software developers and consul-
tants, all champions of different Agile methods, came
together to publish the Agile Software Development
Manifesto.” While the principles of the Agile Manifesto
are attached here as Appendix A, in summary the central
values of all Agile process are: individuals and interac-
tions over processes and tools; working software over
comprehensive documentation; customer collaboration
over contract negotiation; and responding to change
over following a plan.® As some of these central values,
such as the deliberate lack of comprehensive documen-
tation and contract negotiation, are antithetical to the
precepts of commercial contracting, each counsel to a
customer involved in an Agile development project must
strike an effective balance between protecting their cus-
tomer and ensuring that their customer does not lose the
benefits associated with Agile.

In every aspect of development, Agile methods differ
greatly from the traditional Waterfall process:

> Ongoing and evolving specifications: Rather than
developing a detailed set of specifications and docu-
mentation at the outset of the project, the require-
ments in an Agile project are largely emergent and
will change throughout the life of project as a result

5 See for example, R. McCauley, “Agile Development Methods Poised to
Upset Status Quo” SIGCSE Bulletin 33(4), 2001; R.L. Glass, “Agile
Versus Traditional: Make Love, Not War! Cutter IT Journal 13(12),
2001 as cited in Pekka Abrahamson, Outi Salo, Jussi Ronkainen, &
Juhani Warsta, “Agile Software Development Methods: Review and
Analysis” (University of Oulu, Finland: VTT Technical Research Centre
of Finland, 2002), online: http://Agile.vit.fi [Abrabamson et al., “Agile
Software Development™].

See generally, Abrahamson et al., “Agile Software Development.”

7 www.Agilemanifesto.org and www.Agilealliance.org. See Martin
Fowler, “The New Methodology” MartinFowler.com, December, 2005
for a history behind the development of the Agile manifesto, pages 13—
14 [Martin Fowler, “The New Methodology”]. An abridged version
entitled “Put Your Process on a Diet” was originally published in Soft-
ware Development, December, 2000.

8 From www.Agilemanifesto.org (accessed September 21, 2009).

N

CRi6/2010

Beardwood/Shour 163

Risk Management and Agile Software Development: Optimizing Contractual Design

of ongoing discussions between the development
team and the customer.

> More extensive and deeper customer involvement:
While the traditional Waterfall method requires ini-
tial and targeted involvement from the customer’s
subject matter experts mainly during the require-
ments phase, in an Agile process the customer’s per-
sonnel will be on site regularly, collaborating with
the development team and modifying requirements
throughout the life of the project. Although this
allows for a greater degree of control, it also entails a
greater investment of time on the part of the cus-
tomer. The customers must fully understand the
involved nature of the Agile process at the outset or
the collaborative efforts will fail.

> Smaller workteams: Whereas traditional software
development teams may involve hundreds of prog-
rammers working in various locations on disparate
modules, an Agile team will usually consist of two to
eight people working together in a highly collabora-
tive, self-organizing manner, usually within the con-
fines of one “war room.”

> Well rounded, experienced programmers able to
multi-task: The team members will all be highly
skilled experienced programmers, able to take on
multiple areas of the project at once so that no indi-
vidual acts as a bottleneck. The drawback of this,
however, is that each programmer is much less
replaceable — effect, there are more eggs in less bas-
kets.

> Omngoing, periodic testing/quality control: Instead of
testing and integrating various modules after coding
is complete, Agile methods involve short increments
of one to three months to allow for quick testing and
repairing throughout the project. Specific tools and
techniques such as continuous integration’ are often
used to improve quality and enhance project agility.
This also reduces integration risk.

> Success measurement: Finally, in a plan-driven tradi-
tional software development project, a successful
project is one that has met the deliverables set out in
the plan in a timely manner. A successful Agile pro-
ject, however, “will build something different and
better than the original plan foresaw.” !0

3. Different Agile Software Development
Methodologies

There are numerous Agile methodologies!!, each with
their proponents and detractors, and each with their
own eccentricities. While all share the common charac-
teristics discussed above, each arrives at the ultimate
goal of attaining development agility in different ways.
For customers considering embarking on an Agile devel-
opment project, each must conduct careful due diligence
into the development methodologies that might be

9 “Continuous integration” or “CI” implements continuous processes of
applying quality control —small pieces of effort, applied frequently. Con-
tinuous integration aims to improve the quality of software, and to
reduce the time taken to deliver it, by replacing the traditional practice of
applying quality control after completing all development. See http://en
.wikipedia.orglwiki/Continuous_integration.

10 See Martin Fowler, “The New Methodology”.

11 See Abrahamson et al., “Agile Software Development”, supra note 6,
for an extensive overview of Agile software development methodolo-
gies.

Exemplar fir John Beardwood

employed in carrying out their software development
project to determine (I) if Agile is suitable at all given the
project in question, the culture of their organization, and
the resources their organization has available, and (II) if
itis suitable, which particular Agile methodology would
be most effective. Below, some of the major Agile soft-
ware development methodologies are briefly described:

a) Extreme Programming (XP)

Probably the most well-known Agile development
method is Extreme Programming. Kent Beck, the father
of Extreme Programming and one of the founders of the
Agile Alliance, explains that the term was intended to
convey the intensity with which programming can be
done: “Extreme Programming is an aware and focused
activity — all dials turned to 10 — attending to everything
you need to attend to and wasting no energy on things
that don’t matter.”!? Extreme Programming was first
conceived by Beck in his role as project leader in the
development of Chrysler’s Comprehensive Compensa-
tion (C3) System payroll project around 1996. Beck
published the first edition of his book, Extreme Pro-
gramming, soon afterwards in 1999.13 Extreme Pro-
gramming quickly gained popularity in the late ‘90s and
early 2000s and is one of the most widely used Agile
methodologies. Like most Agile methodologies, the
Extreme Programming process is characterized by short
development cycles, incremental planning, continuous
feedback, and reliance on communication, and iterative
design.

Many of the concepts and practices associated with
Extreme Programming are not particularly unique or
innovative, but rather it is the combination and imple-
mentation of these practises (“all dials turned to 10”)
that makes this method effective. In Extreme Program-
ming, there is a significant focus on communication
between stakeholders and on face-to-face feedback. One
such communication-oriented activity is the “Planning
Game” at the outset of the project, where user stories are
written on cards, estimated and prioritized. For each
release, another Planning Game is performed. Another
communication-oriented principle is the “Onsite Cus-
tomer”. Throughout the development process, it is stan-
dard practice to have the customer onsite, or at least
readily available, to answer questions, set priorities and
determine requirements of the project. Finally, another
key feature of Extreme Programming, one which distin-
guishes it from other Agile methodologies, is its focus on
pairs of programmers programming together; one pro-
grammer “drives” while the other “codes.” Roles are
frequently switched to keep the programmers fresh and
teams generally do not exceed a forty-hour work week
to ensure productivity can be sustained.'* Pairs are not
only involved in coding, but also in testing and integra-
tion, which immediately follows any coding.!

12 Steve Hayes, “Battling Extreme Programming’s Misconceptions” (08
January 2004) Builder.com.

13 The book is now in its second edition: K. Beck & C. Andres, Extreme
Programming Explained, 2nd Edition (Upper Saddle River, NJ: Addi-
son-Wesley, 2005).

14 Juha Koskela, Mauri Myllyaho, Jukka Kddridinen, Dan Bendas, Jarkko
Hyysalo & Anne Virta, “Experiences of Using Extreme Programming to
Support a Legacy Information System Migration Project” (University of
Oulu: VTT Technical Research Centre of Finland, 2004).

15 See generally www.extremeprogramming.org and www.xprogramming
.com.

164

Beardwood/Shour

CRi6/2010

Risk Management and Agile Software Development: Optimizing Contractual Design

b) Scrum

The term “scrum,” taken from rugby terminology,'® was
first used in a Harvard Business Review article discuss-
ing new commercial product development, not soft-
ware.!” In the early 1990s, both Ken Schwaber and Jeff
Sutherland independently developed and employed the
similar Scrum-style development practices at their
respective companies. They jointly began presenting
papers and writing on the subject.!®

Unlike some of the other methodologies, Scrum does not
prescribe detailed engineering practices, but rather
focuses on the management aspects of software develop-
ment. A product backlog is developed and it defines
everything that is needed in the final product based on
the current understanding. It is continuously updated
through consultations between the customer and mem-
bers of the development team. Through a collaborative
dialogue, the customer and the development team
jointly estimate the effort required to carry out various
tasks, and development is divided into thirty day itera-
tions, called “Sprints.” A Sprint planning meeting is
organized by the Scrum Master at the outset of each
Sprint, in which the development team develops the
objectives along with the customer. Close monitoring
and control is attained through fifteen-minute daily
scrum meetings, in which progress is discussed and any
problems or other variables are addressed.

c) Crystal

Alistair Cockburn, a well known proponent of Agile
software, formulated the Crystal development method-
ologies."” Unlike Extreme Programming, Crystal does
not advocate specific processes, but recommends differ-
ent methodologies for different size teams and different
types of projects. Crystal can be understood as a people-
focussed, rather than process-focussed, development
tool; teams are encouraged to choose aspects from vari-
ous methodologies, including Extreme Programming,
that best suit the task at hand. Cockburn does suggest,
however, the following aspects be present in an Agile
development process: regular incremental delivery; pro-
gress tracking by software delivery rather than written
documentation; direct customer involvement, including
two user viewings per iteration; interviews and team
workshops to determine the appropriate methodology
for each individual project; and pre- and post-increment
reflection for the project members.

16 In rugby, a scrum or scrummage is the method of beginning play in
which the forwards of each team crouch side by side with locked arms.
Play begins when the ball is thrown in and the two sides compete for pos-
session.

17 H. Takeuchi and I. Nonaka, “The New Product Development Game”
(1986), Jan./Feb., Harvard Business Review, at 137-146. The same
authors have also, more recently, released a book covering similar
ground: H. Takeuchi and I. Nonaka, Hitotsubashi on Knowledge Man-
agement (Singapore: John Wiley & Sons (Asia), 2004).

18 The first of which was “Scrum Development Process” OOPSLA’9S
Workshop on Business Object Design and Implementation (Springer-
Verlag, 1995). See generally, www.controlchaos.com, Shwaber’s web-
site; Ken Schwaber and Mike Beedle, Agile Software Development with
Scrum, (Prentice Hall, 2001).

19 See Alistair Cockburn’s website at hitp://alistair.cockburn.us; See Alis-
tair Cockburn, Crystal Clear: A Human-As an extension of rapid appli-
cation development (Addison-Wesley Professional, 2004).

Exemplar fir John Beardwood

d) Dynamic Systems Development Method
(DSDM)

DSDM, based on rapid application development meth-
odology, is a framework tool developed in the United
Kingdom in the early ‘90s by a non-profit group of soft-
ware engineering experts.?’ Unlike other Agile method-
ologies, which adjust time and resources dedicated to the
development project in order to meet certain functional-
ity requirements, DSDM fixes the level of functionality
based on the time and resources available. This focus on
the availability of resources means DSDM is particularly
effective for projects with aggressive deadlines and tight
budgets. The project is split into iterations called “time-
boxes,” and each timebox has its own budget and deliv-
ery date. Requirements are prioritized on a must-,
should-, could-, or would-have basis to ensure that
resources are dedicated to items of the highest priority
first. Early prototyping and user testing is prescribed by
the DSDM methodology to ensure the project stays on
track and to maintain a high level of customer involve-
ment.

II. Choosing the Right Methodology

As Agile has become more prevalent in the development
community, the analytical focus has shifted from assess-
ing whether Agile is “good” or “bad”, to determining
for what types of projects Agile is good or bad — or more
accurately, for what types of project/contexts Agile is the
most or least optimal methodology?'. While Agile meth-
ods are still relatively new??, there appears to be a devel-
oping consensus that Agile is less appropriate (and thus
“planned” methodologies such as Waterfall are more
appropriate) in development contexts which exhibit one
or more of the following characteristics:

> Large-scale development efforts.

> Distributed development efforts (non-co-located
teams).

> Forced adoption of Agile by the development team.
Junior developers.

High criticality projects — i.e. mission-critical sys-
tems where failure is not an option at any cost (soft-
ware for surgical procedures).

> Relatively fixed requirements -i.e. the requirements
do not change often.

Order-based development culture.

Only limited degree of customer participation avail-

able.

Thus Agile is more appropriate in the following con-
texts:

> Smaller-scale development efforts.

20 See Abrahamson et al., “Agile Software Development”, supra note 6 at
61-68; see also www.dsdm.org for the DSDM Consortium’s website.

21 Barry Boehm and Richard Turner have characterized each of the opti-
mal contexts for each of Waterfall or “planned” methodologies, and
Agile methodologies, as being such methods “homeground”. See
(2004). Balancing Agility and Discipline: A Guide for the Perplexed.
Boston, MA: Addison-Wesley. pp. 55-57.

22 See Answering the “Where is the Proof That Agile Methods Work”
Question”. Agilemodeling.com. 2007-01-19. www.agilemodeling.com/
essays/proof.htm.

CRi6/2010

Beardwood/Shour 165

Risk Management and Agile Software Development: Optimizing Contractual Design

> Co-located development efforts.

> Adoption by an Agile-experienced development
team.

Senior developers.

Low criticality projects — i.e. systems with a higher
tolerance for failure..

Frequently changing requirements.
“Chaos-based” development culture.

> High degree of customer participation available.

III. Agile and Risk Mitigation: Babies and
Bathwater

1. Contract required?

On reviewing such minimal literature as exists which
addresses the issue of Agile development contracts, it
becomes evident that there is a strong theme of disdain
for the contractual process and the role it might play in a
Agile development project (recall: “Customer collabora-
tion over contract negotiation”)?3. In some ways, it is
reminiscent of the some of the original hype regarding
open source, where for a period developers seemed to be
wilfully blind to the fact that the “L” in GPL signified
“Licence” —i.e. a right to use that was governed by par-
ticular terms and conditions.

However, while there are obvious benefits to the collab-
oration and teamwork between the customer and the
development team which Agile fosters, just as with
Waterfall projects the contract between a customer and
a developer must set out the roles of each of the different
parties, and must address circumstances where the par-
ties dispute one or more issues. In other words, notwith-
standing that one unifying theme between the different
Agile schools is the premium each places on (i) trust and
understanding between the parties, and (ii) a minimum
amount of documentation and formality, at the most
basic level the customer still has a budget, and still
requires results.

Further, whether or not the Agile collaborative approach
reduces the likelihood of such disputes occurring, when
such a dispute does occur, Agile’s characteristics can
make the resolution of that dispute more difficult. For
example, in an Agile project where little or no documen-
tation has been produced, to what documents can the
parties point as evidence of their respective expecta-
tions? What if certain key project staff for one or both
parties leave their respective employers -is there suffi-
cient documentary evidence available to assist their suc-
cessors? For this non-module based methodology, how
are payment milestones addressed? In addition, given
that there are different forms of Agile, are there specific
additional risks which may be posed by the specific form
of Agile in question?

2. A Process-Oriented Contractual Framework:
Governance, Governance, Governance

Once the customer has determined (i) that Agile is the
right methodology, and (ii) the optimal form of Agile, in

23 Supra note 10.

Exemplar fir John Beardwood

each case for their particular project/development con-
text, the customer will needs to confirm that the devel-
opment contract has all of the elements required in order
to effectively manage the risk of the Agile project.

“Customer collaboration over contract negotiation”

Key principle from the Manifesto for Agile Software Develop-
ment?*

An Agile development contract requires a greater
emphasis on process than does a Waterfall contract; for
example, more focus on governance and reporting.
Again, where traditional “plan” software development
methodologies and their respective contracts identify the
achievement of very specific requirements as the end
goal, Agile or process-oriented methodologies and their
contracts anticipate an evolving development process.
The customer will come to the table with initial business
requirements that it wishes to achieve through the soft-
ware, but, rather than agreeing on what the software
will look like upon completing the development process,
the parties will create a contractual framework for a pro-
cess that will allow them to both respond to changing
requirements, and to reach the end result desired, with-
out actually specifying exactly what that result will be
beyond the basic functional requirements. As a result,
and as outlined in more detail below (for example, in
Sections 5 and 7), an Agile development contract will
necessarily require a greater emphasis on governance.

3. Is Agile right for you? Buying into the Agile
Process

Before initiating an Agile software development project,
it is of paramount importance that all parties agree that
Agile best suits the particular project. It is in the interest
of both the developer and the prospective customer to
ensure that they are well-educated regarding Agile phi-
losophy, the terminology, and each step of the Agile pro-
cess. This is a critical first step in avoiding disputes at a
later date.

Some of the factors which a customer should consider in
ascertaining whether Agile is truly the right approach for
their project and their organization have been outlined
under II. above. In developing its goals, priorities, and
budget for the software project, the customer will need
to consider whether Agile is the best method, in the spe-
cific context, to translate the deliverables from the pro-
ject into business value.

For example, just to focus on one element, the customer
needs to prepared for a more intense level of participa-
tion than in Waterfall projects — as a result, one or sev-
eral of its people will have to be dedicated to the project
on an ongoing basis. Further, the individual(s) that the
customer dedicates to the Agile project must be knowl-
edgeable about all aspects of the business that will
potentially be impacted by the development project, in
order to ensure that they are able to effectively articulate
user requirements as they emerge through the develop-
ment cycle.

24 www.Agilemanifesto.org.

166

Beardwood/Shour

CRi6/2010

Risk Management and Agile Software Development: Optimizing Contractual Design

4. Doing the due diligence: The First Date

“Working software over comprehensive documenia-
tion”
Key principle from the Manifesto for Agile Software Develop-
ment?®

Due to the high degree of uncertainty as to whether or
not Agile may be the appropriate method for any given
development project, the first stage of the Agile develop-
ment process will require that the parties conduct some
due diligence in order to confirm if Agile is so appropri-
ate in the context. From a contractual point of view, that
means that the first step is the development and execu-
tion of an initial non-disclosure and/or consulting agree-
ment. This will both allow the parties to test the waters
and opt out of the process after the initial phase if they so
desire, and avoid expending money and time on drafting
and negotiating a specialized, process-oriented contract
before the developer and customer are sure they would
like to engage in a development project based on Agile.
Only once the parties have concluded this initial consul-
tative phase by affirming that Agile will work in the con-
text, should the parties then begin developing the pro-
cess-oriented contract.

During this first due diligence stage of the development
project, the customer and developer should work
together in order to, for example:

> understand the customer’s business objectives and
gain an appreciation for the scope of the project;

> specify the human and technical resources which
both parties will be required to dedicate, which both
will provide a degree of confidence to the customer
and will assure the developer that the customer is
committed to dedicating the personnel and the
resources required to successfully complete an Agile
project; and

> agree on functional and non functional requirements
and prioritize these requirements as they see fit.

This is not to say that these stages do not take place and
are otherwise required for Waterfall projects. Rather, the
difference is in emphasis.

It also would be prudent to allow for a non-liability
opportunity to opt out from the Agile process after this
first stage of the contract, in order to, for example, adopt
a Waterfall method of development. Since many Agile
development shops only provide Agile services, a new
developer may be required if the customer decides to
pursue a more traditional approach.

Finally, if the customer does agree to use the Agile devel-
opment methodology, the developer and the customer,
having devoted a good deal of time to discussing the var-
ious details and plans during this first date stage, will
have an easier time negotiating the terms of the process
oriented contract.

5. The Relationship: Iterations

“Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale”

Key principle from the Manifesto for Agile Software Develop-
ment?®

25 www.Agilemanifesto.org.

Exemplar fir John Beardwood

Once the first date stage is over and the parties have
agreed to a longer-term development relationship pursu-
ant to the terms of a process-oriented contract, the Agile
development project will begin in earnest by entering
into the iteration phase. Iterations are a key — if not the
key —element of any Agile process, and, in our view, also
the most risky. The parties must therefore focus on
implementing a governance structure for the iteration
process which is both efficient (in order to maintain agil-
ity) and effective (in order to minimize the risk).

There are some critical differences in risk profile
between Waterfall and Agile, as a result of the iteration
process. The compartmentalized and non-iterative
nature of a traditional Waterfall project means that a
great deal of the risk will allocated to the end of the pro-
ject — i.e. during the critical integration and acceptance
testing phase. As a result, a Waterfall contract will
address, in detail, the procedures for testing the software
and the parameters for accepting such tests. In contrast,
during the iteration phase the free-flowing nature of the
Agile process, where the design “roadmap” is not set out
in advance, can lead to a significant risk of scope creep.

The process-oriented contract, therefore, should pro-
vide a governance framework for the iteration process
which specifies the frequency of iterations, how iteration
meetings should be conducted, and the process for
agreeing on timelines, priorities, and functionality.
Often, an early iteration will be the development of a
prototype with minimum functionality as it will provide
a solid base from which the customer and development
team can work. Generally, the contract should require
that mandatory functionality should be listed, the devel-
opment effort for the items required should be esti-
mated, and consent from both sides regarding the objec-
tives of the iteration should be obtained, for each itera-
tion. The contract should also specify when and how the
dispute resolution/arbitration provision can be acti-
vated with respect to a dispute over running a given iter-
ation.

6. Testing
“Working software is the primary measure of progress”

Key principle from the Manifesto for Agile Software Develop-
ment?’

While, as with traditional Waterfall development,
acceptance testing is also an important aspect of Agile
development, unlike Waterfall, testing in Agile occurs
over a different time horizon. In Waterfall, the accep-
tance testing is often a major undertaking, which may
require thirty days of testing or more, and the results of
which may trigger or delay payment. In Agile, where the
iterations are relatively short, the deliverables are
smaller, and the testing occurs throughout the project,
the testing will be much more informal and may take an
hour or a day. The contract should provide testing crite-
ria that clearly set out when an iteration is deemed com-
plete, and should clearly provide the consequences of
passing and failing an acceptance test. It is important to
note that, as the project progresses, a test of a given itera-
tion may show that the iteration works well indepen-
dently, but does not integrate properly within the sys-

26 www.Agilemanifesto.org.
27 www.Agilemanifesto.org.

CRi6/2010

Beardwood/Shour 167

Risk Management and Agile Software Development: Optimizing Contractual Design

tem. Different consequences may be prescribed for such
a situation. Final test results should also be documented
and signed off on by representatives of both parties. The
contract should also specify when and how the dispute
resolution/arbitration provision can be activated with
respect to a difference of opinion regarding an accep-
tance test.

7. Who is calling the shots?

“The most efficient and effective method of conveying
information to and within a development team is face-
to-face conversation”

Key principle from the Manifesto for Agile Software Develop-
ment?®

Since Agile software development involves intense col-
laboration between members of the development team
and members of the customer team, it is important that
the contract set out a governance framework which
specifies which individuals or classes of individuals
working on the project may make key decisions. While
the highly formalized and compartmentalized Waterfall
process is hierarchical, the Agile process creates a flatter
organizational dynamic. By definition the scope of an
Agile project will evolve, and, at certain points, changes
to the scope will be made and activities outside the scope
will be carried out. Which representatives will have the
authority to make changes — only the project leaders or
any member of the team? Allowing all members of the
team to effect such change may result in a more rapid
and creative development process, but may also entail
greater risk of error or disagreement. Reserving such
decision-making power to the most senior member(s) of
the team reduces agility but also reduces risk. The cus-
tomer and the developer must discuss and agree upon
the level of risk they are comfortable with in this respect.
Generally, once the scope of the project is well defined,
items within the scope can be dealt with verbally, and
any disputes with regard to changing the scope should be
dealt with through the agreed-upon change manage-
ment process, or, if need be, the dispute management
process.

8. Documentation and Change Management

“Welcome changing requirements, even late in develop-
ment. Agile processes harness change for the customer’s
competitive advantage”

Key principle from the Manifesto for Agile Software Develop-
ment?’

As the process-oriented contract will focus on procedure
rather than specifications, many of the specifications,
and decisions regarding same, will arise through daily
meetings between members of the development team.
Due to the informal nature of the Agile decision-making
process, it is important to consider what constitutes a
valid agreement in the course of the development pro-
ject. While Agile contracting processes advocate a low
level of documentation and formality, a complete dearth
of formality entails legal risk.

Simple documentation can go a long way, not only in
providing some legal certainty, but also in solidifying

28 www.Agilemanifesto.org.
29 www.Agilemanifesto.org.

Exemplar fir John Beardwood

priorities. Therefore, there are good reasons to advocate
for the incorporation into the Agile development con-
tract, of procedures that facilitate the inclusion of the
meeting minutes into the agreement between the cus-
tomer and the developer. Although it might be overly
burdensome to draft a mini-contract for each iteration,
taking clear minutes at each iteration planning meeting
and having each party sign off on and file these minutes
will create additional certainty with the imposition of a
minimal additional burden. These minutes will assist in
solidifying priorities and objectives, and in minimizing
the opportunity for unwanted scope creep and future
disagreement. As discussed above, the team members
with the authority to change the scope must be specified
in the contract, and it is those individuals who should be
required to sign off on the minutes where the effect of the
minutes is to alter the scope of the project.

The developer and the customer may agree on a set pro-
tocol detailing specific requirements for the minutes.
Though the minutes should be as brief as possible, varia-
tion to scope should be clearly stated, changes required
in the resources (human resources and otherwise) should
be clearly described, and consequential changes to the
rest of the system should be clearly set out — in effect, the
minutes will act as a change order.

9. Mini Arbitration

“Business people and developers must work together
daily throughout the project”

Key principle from the Manifesto for Agile Software Develop-
ment3’

While it is hoped that the risk mitigation strategies dis-
cussed above - i.e. the implementation of (a) the first
date/due diligence process; (b) frameworks for manag-
ing iterations and testing; and (c) a clear allocation of
roles and responsibilities such that having individuals
with an agreed-upon level of authority sign off on docu-
mentation and changes — will reduce occasion for dis-
pute, the parties still must be prepared to deal with con-
flict should it arise.

A mid-project “mini arbitration” clause should be
included to deal with any deadlocks in the decision-mak-
ing process. The sort of agreement that triggers such as
arbitration should be specified along with notice
requirements. A list of technically qualified arbitrators
can be agreed upon, and money can be allocated or even
paid in advance, to keep one or several arbitrators on
retainer to allow for speedy resolution. If the parties
agree throughout, all or a portion of such retainer
money as is never used can be returned to the general
budget, and distributed between the parties upon com-
pletion of the project. Indeed, merely having an arbitra-
tion clause in place can encourage the parties to come to
an agreement.

10. Sharing the Risk: Fee Structures for Agile
Projects

a) Alternative Fee Structures

It is up to the parties to decide upon a fair compensation
system that both motivates the developer and ensures

30 www.Agilemanifesto.org.

168 Beardwood/Shour

CRi6/2010

Risk Management and Agile Software Development: Optimizing Contractual Design

that the developer has reasonable cash flow during the
development project. Ideally, the risk should be shared
in some fashion between the parties. In a Waterfall pro-
ject, it is conventional for the project plan to include a
series of payment milestones: for example, an initial pay-
ment to initiate the project; a mid-term payment; a pay-
ment upon receipt of the product for a acceptance, and a
final payment upon the successful completion of the
acceptance testing. In terms of proportionality, a cus-
tomer will seek to have as much as possible of the pay-
ment allocated to the successful completion of the accep-
tance testing — for example, in the form of a payment
worth 33 % or 50 % of the total.

Similar motivations exist for an Agile project, but the
difference is that, without a preset set of specifications or
“design roadmap?, it is difficult to agree in advance on a
series of payment milestones. Beyond that, many Agile
commentators argue that Agile development is simply
incompatible with fixed price projects, because success-
ful fixed price engagements are dependent on fixed
scope, and Agile projects by definition do not have a
fixed scope. That being said, customers need to budget
software projects, and therefore need some certainty
built into the payment structure.

A number of solutions have been suggested to address
this concern, including:

> Estimate and fund by iteration only: Given that each
iteration is intended to produce some form of deliver-
able (recall: delivery of working software over docu-
mentation), this is a good way to manage costs while
allowing for more flexible time and materials pay-
ments for each iteration. Disciplined agile methods
such as Open Unified Process have built in “stage-
gate” decision points which to facilitate this
approach.’!

> Cost Plus: The developer is paid for their costs only,
but delivery bonuses are paid for working software,
such that the developer will not make a margin
unless they consistently deliver working software.

> Cost-Sharing: If there is a budget target, any amount
by which the actual cost exceeds or is below the tar-
get (or past a specified acceptable percentage above
or below) will be shared by both the customer and
the developer, such that both cost savings and cost
overruns are shared.

For Agile projects, Cost Plus and Cost-Sharing would
best be applied by iteration in order to be successful fee
structures.

b) EVM Fee Structures

Earned Value Management (“EVM”) — a common pro-
ject management technique for measuring planned
expenditures, actual expenditures, and cost against
planned performance — contains elements of the fee
alternatives set out above, and can be employed to track
the progress of an Agile development project.’? Ulti-

31 “Agility@Scale: Strategies for Scaling Agile Software Development:
Funding Agile Projects” by Scott Ambler July 30 2009), at https://www.i
bm.com/developerworks/mydeveloperworks/blogs/ambler/entry/fundi
ng_agile_projects?lang=en.

32 Seegenerally, David S. Christiansen, & Daniel V. Ferens, “Using Earned
Value for Performance Measurement on Software Development Pro-
jects” (Spring, 1995) Acquisition Review Quarterly, DAU Press, at pg.

Exemplar fir John Beardwood

mately, EVM provides metrics for evaluating work actu-
ally accomplished and fee payments can therefore be tied
to meeting certain thresholds on these metrics. Gener-
ally, EVM considers the following three dimensions:?3

1. Planned Value (or “Budgeted Cost of Work Sched-
uled”; “BCWS”): a valuation of planned work, based
on the cost budgeted for the work to be completed in
a given time period;

2. Actual Cost: the total cost that was actually incurred
in accomplishing the work during the given time
period; and

3. Earned Value (or “Budgeted Cost of Work Per-
formed”; “BCWP”): uses pre-defined “earning
rules” (also called metrics) to quantify the accom-
plishment of work during a given time period.

EVM is perhaps best explained as follows: Whether or
not the fact that Actual Cost is less than Planned Value
(i.e. under-budget) or greater than Planned Value (i.e.
over budget) at any one point in time is meaningless
without assessing the extent to which the work was actu-
ally accomplished during that time period. More specifi-
cally, the fact that Actual Cost exceeds Planned Value at
Week 10 may not be problematic if in fact the project has
been completed at Week 10, when originally it was
scheduled to be completed at Week 15 —i.e. if it has been
completed five weeks ahead of time. The third variable
of “Earned Value” is intended to capture this third
dimension of technical progress/achievement, and
allows the parties to derive more useful conclusions
from the available data:

> First, the Schedule Variance (Earned Value minus

Planned Value), shows whether technical progress is
ahead or behind schedule.

> Second, the Cost Variance (Earned Value minus
Actual Cost), by ignoring the planned budget in
favour of actual technical progress produced against
actual cost, will indicate whether the project was
actually under or over budget, relative to the amount
of work accomplished (rather than to the planned
budget) since the start of the project.

> Third, the Cost Performance Index (Earned Value
divided by Actual Cost) gives the parties the ratio by
which the project is exceeding or is under budget, on
an ongoing basis — i.e. if the resulting value is less
than 1.0, it is apparent that project is proceeding
over budget, as for every cent spent, less than a cent
in value is being produced. For example, if the pro-
ject is proceeding over budget and the Earned Value
is $60,000 and the Actual Cost is $100,000, the Cost
Performance Index will be 0.6.

> Fourth, multiplying the total Planned Value budget
for the project by the Cost Performance Index then

115-170; Glen B. Alleman, “Project Management = Herding Cats: A
Field Report, Agile Project Management, PMForum, online: www.pmfo
rum.orglviewpoints/2003/0203 Agilepm.htm; Tamara Sulaiman, “Agi-
[eEVM - Earned Value Management the Agile Way” (January 18,
2007), Agilejournal.com; Tamara Sulaiman, Brant Barton, & Thomas
Blackburn, “AgileEVM - Earned Value Management in Scrum Project”
solutionsIQ.com. Note a template Excel spreadsheet is available at
www.solutionsiq.com/Agile_index.html.

33 See Anthony Cabri, and Mike Griffiths, “Earned Value and Agile
Reporting,” Quadrus Development Inc., online: http://leadinganswers.t
ypepad.com/leading_answers/files/Agile_and_earned_value_reporting

.pdf.

CRi6/2010

Beardwood/Shour 169

Risk Management and Agile Software Development: Optimizing Contractual Design

allows the parties to estimate whether, if the cost per-
formance index was assumed to be a constant
throughout the term of the project, the project will or
will not be over or under budget. Thus, using the
example above, if the total budget for the project is
$1,000,000, the estimated total cost at completion is
$1,000,000/0.6 = $1,666,667, or $666,667 over
budget.

> Fifth, the Schedule Performance Index (Earned
Value divided by Planned Value) provides the parties
with the rate of technical progress of the project —i.e.
if the resulting value is less than 1.0, then there is an
overrun and the project is behind schedule. For
example, if the project is proceeding ahead of sched-
ule and the Earned Value is $100,000 and the
Planned Value is $75,000, the Schedule Performance
Index will be 1.33.

> Sixth, dividing the total budgeted schedule by the
Schedule Performance Index provides the estimated
remaining time to completion. Thus, using the exam-
ple above, if the total planned time remaining to
completion is 4 (months or iterations), the revised
estimated remaining time required to completion is
4/1.33 = 3 (months or iterations).

In summary, adding this third variable of “Earned
Value” to capture the third dimension of technical pro-
gresslachievement, allows for the calculation of very
helpful performance metrics which can then provide
warnings of performance, scheduling, and budget issues.

How can EVM be applied to an Agile project? As refer-
enced under Section I.1. above, in a Waterfall project the
scope is defined at the outset, project milestones are set
out, and a master schedule and budget are prepared.
Scope changes are intended to be exceptions to the rule,
and if there is a change, the high level of documentation
makes it simpler to estimate the effect this change. With
Agile development, however, the scope can change
throughout and, therefore, calculating Planned Value
can become particularly difficult.

To avoid this concern, rather than focusing on the
Planned Value budget for the entire project, Cost and
Schedule Performance Indexes can be calculated for
each iteration. Instead of budgeting dollars and time, an
Agile project can be evaluated based on planned features
and budgeted iterations. This way, compensation can be
tied to each iteration (if the customer is paying sepa-
rately per iteration) or the ability to meet targets aver-
aged over the course of the entire project. To ensure fea-
tures are properly prioritized, the developer and cus-
tomer can also agree on different weighting for different
features in the iteration. Finally, to the extent that there
are scope changes, the focus on doing the calculations on
an iteration basis allows for more flexibility in taking
account of such scope changes for each iteration.

To encourage agreement and open discussion between
the developer and the customer, the rewards and penal-
ties for meeting or failing to meet performance and
scheduling targets could also be shared by both the cus-
tomer and the developer. In addition to assisting in deter-
mining compensation, these metrics can allow the devel-
opment team and the customer to more effectively track
progress.

Exemplar fir John Beardwood

11. Changing Horses: Exiting Agile Projects

As a final point, customers should recognize that Agile
projects can very difficult to exit, whether through ter-
minating or outsourcing* all or part of the project(s),
for reasons which include the following;:

i. Escrow arrangements have limited utility: Without
written specifications to deposit, the value of any source
code escrow arrangements will be limited. As a result,
the nature of the deposited materials will require greater
scrutiny by the customer. The customer should ask for
the escrow deposit materials to include, for example,
working notes, and contact information for each of the
developers.

ii. Non-solicitation covenants in the master agreement:
Again, given the lack of documentation, it is the person-
nel rather than the code which are the most significant
assets, such that in the event of a termination customer
would need to ensure that the developer waived any
non-solicitation covenants in the master agreement, so
that customer could have ready access to such develop-
ers, even if on a seconded basis

iii. Isolation from overall development process: For
high-risk projects, embed one or more customer
“shadow” developers in the development team, in order
to ensure that such developers have a general under-
standing of how the code is being developed. Also,
ensure that customer personnel benefit from the high
degree of interaction involved in an Agile project by tak-
Ing appropriate notes.

IV. Conclusion

One of our chapters herein is entitled “Agile and Risk
Mitigation: Babies and Bathwater” in order to empha-
size that it is facile to argue that the parties can “throw
out” the concept of a contract as a natural corollary to
“throwing out” the more disciplined and planned ele-
ments of Waterfall methodologies. Rather, it is impor-
tant to note that, first, a robust contract remains an
essential element of each an Agile project, and second, in
order to ensure that the contract is indeed “robust” in
addressing the risks of an Agile project, counsel needs to
understand what are those risks, and their potential
solutions.

The paper opened with the results of the Forester study
as to the prevalence of different software methodologies
in the software development community, in order to
highlight to increasing predominance of Agile. However,
in some respects another result was even more signifi-
cant: the second most popular response as to the soft-
ware methodology of choice, at 30.6 %, was “Do not
use a formal process methodology”3°. How to contract

34 Once the customer has the contract in place, customer may be tempted
to outsource a section of the project to another developer who, for
example, may be able to produce a given iteration for 20 % less than
your development team. Outsourcing is not optimal for customers
involved in an Agile process. Given that one of the major benefits of the
Agile process is having a small, highly skilled development team that
knows the issues, each other, and the project very well, outsourcing a
piece of the project runs the risk of demoralizing the team, disrupting the
trust between the parties, and reducing the benefits of accumulated
knowledge. In short, outsourcing within an Agile development process
is not recommended.

35 Forester Research, Dr. Dobb’s Global Developer Technographics Sur-
vey, Q3 2009. As a result, the second most popular response which actu-
ally identified a formal methodology was Iterative Development, at

170 Westkamp

CRi6/2010

Digital Economy Act and Copyright Liability: Initial Observations on the Dangers of Self-Regulation

with developers using 7o formal methodology at all, will
have to be subject of another paper.

Appendix A: Principles behind the Agile
Manifesto

from: www.Agilemanifesto.org/principles.btml
We follow these principles:

1. Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.

2. Welcome changing requirements, even late in devel-
opment. Agile processes harness change for the cus-
tomer’s competitive advantage.

3. Deliver working software frequently, from a couple
of weeks to a couple of months, with a preference to
the shorter timescale.

4. Business people and developers must work together
daily throughout the project.

21 %. Given that the iterative process is a key element of Agile, one
might argue that this result is also reflective of a trend towards adopting
Agile-styles of programming.

5. Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

6. The most efficient and effective method of conveying
information to and within a development team is
face-to-face conversation.

7. Working software is the primary measure of pro-
gress.

8. Agile processes promote sustainable development.
The sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and
good design enhances agility.

10. Simplicity—the art of maximizing the amount of
work not done-is essential.

11. The best architectures, requirements, and designs
emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.

Guido Westkamp

The Digital Economy Act and Copyright Liability: Initial Observations
on the Dangers of Self-Regulation

The article reviews, tentatively, the potential implication
of the Digital Economy Act 2010 and the code of con-
duct that will accompany the Act. It argues that the sanc-
tions foreseen, in order to be effective, will have a detri-
mental effect on copyright as an open system and that
the overall aim to deter users by imposing obligations
upon service providers — ranging from lowering connec-
tion speed quality to ultimately disconnection — is dis-
proportionate in view of the uncertainties surrounding
the notion of “copyright infringement” and “infringe-
ment threshold” employed by the Digital Economy Act.
The article critically reviews the system of self-regula-
tion foreseen under the Act and outlines potential future
areas of conflict in relation to substantive copyright law,
fair judicial procedure, communication freedom and
criminal liability in Intellectual Property law in general.

I. Introduction

Private acts of copyright violation had — in contrast to
other jurisdictions — never been subject to criminal law
in the UK. This makes the enforcement of rights more
difficult for right holders especially in cases of so-called
file sharing. The answer to that phenomenon in particu-
lar is hoped to be the Digital Economy Act 2010, It is

D Dr. Guido Westkamp, LL.M., Queen Mary Intellectual Property
Research Institute, Queen Mary College, University of London. Further
information about the author at p. 192.

1 2010 C. 24, introduced by Lord Mandelson. The Act is published under
www.opsi.gov.uk/acts/acts2010/ukpga_2010024_en_1. The provisions
(Sec. 3-16) will be inserted into Secs. 124A-124N of the Communica-

Exemplar fir John Beardwood

this absence of a general criminal liability rule, together
with the more fundamental practical complexities in
prosecuting consumers on the basis of civil sanctions
that lies at the heart of the conceptual approach to the
digital economy. The Act followed the “Digital Britain”
report. Royal assent was given on 8 April 2010. The Act
entered into force on 10 April 2010.

The Act introduces a policy according to which internet
service providers will be obliged to disconnect offenders,
or to decrease the quality of broadband access, after hav-
ing committed acts constituting “infringement of copy-
right”. The Act came partially into force on 8 April
2010. At present, the details are not known, subject to
further refinement to be carried out by Ofcom. The Act
will establish a specific procedure that permits copyright
owners to enforce their rights vis-a-vis both end users
and entities offering offending content. It foresees a
complex interplay between state authorities, right hold-
ers and service providers.

The introduction of these measures causes concern.
Though not strictly speaking a criminal offence, the Dig-
ital Economy Act 2010 actually foresees measures that
significantly impact upon the ability to use the internet
in general, and thereby these measures — by and large —
replace the otherwise burdensome enforcement as
against individual offenders on the basis of civil law.
Overall, it presents itself as the alternative choice to

tions Act 2003. On the evolution of the Act see Lloyd, CRi 2010, p. 61
and Lloyd, CRi 2010, p. 159.

